Lecture 12: Stack, Buffer Overflow

🎥 Lecture video (Brown ID required)
💻 Lecture code (buffer overflow)
❓ Post-Lecture Quiz (due 11:59pm, Monday, March 10).

The Stack

You will recall the stack segment of memory from earlier lectures: it is where all variables with automatic lifetime are stored. These include local variables declared inside functions, but importantly also function arguments.

Recall that in call01.s to call03.s contained a bunch of instructions referring to %rsp, such as this implementation of the function f() (from call01.s):

        movl    %edi, -4(%rsp)
        movl    -4(%rsp), %eax
        ret
The first movl stores the first argument (a 4-byte integer, passed in %edi) at an address four bytes below the address stored in register %rsp; the second movl instruction takes that value in memory and loads it into register %eax.

The %rsp register is called the stack pointer. It always points to the "top" of the stack, which is at the lowest (leftmost) address current used in the stack segment. At the start of the function, any memory to the left of where %rsp points is therefore unused; any memory to the right of where it points is used. This explains why the code stores the argument at addresss %rsp - 4: it's the first 4-byte slot available on the stack, to the left of the currently used memory.

In other words, the what happened with these instructions is that the blue parts of the picture below were added to the stack memory.

We can give names to the memory on the left and right of the address where %rsp points in the stack. The are called stack frames, where each stack frame corresponds to the data associated with one function call. The memory on the right of the address pointed to be %rsp at the point f() gets called is the stack frame of whatever function calls f(). This function is named the caller (the function that calls), while f() is the callee (the function being called).

The memory on the right of the %rsp address at the point of f() being called (we refer to this as "entry %rsp") is the caller's stack frame (red below), and the memory to its left is the callee's stack frame.

The arguments and local variables of f() live inside f()'s stack frame. Subsequent arguments (second, third, fourth, etc.) are stored at subsequently lower addresses below %rsp (see call02.s and call03.s for examples with more arguments), followed eventually by any local variables in the caller.

How does %rsp change?

The convention is that %rsp always points to the lowest (leftmost) stack address that is currently used. This means that when a function declares a new local variable, %rsp has to move down (left) and if a function returns, %rsp has to move up (right) and back to where it was when the function was originally called.

Moving %rsp happens in two ways: explicit modification via arithmetic instructions, and implicit modification as a side effect of special instructions. The former happens when the compiler knows exactly how many bytes a function requires %rsp to move by, and involves instructions like subq $0x10, %rsp, which moves the stack pointer down by 16 bytes. The latter, side-effect modification happens when instruction push and pop run. These instructions write the contents of a register onto the stack memory immediately to the left of the current %rsp and also modify %rsp to point to the beginning of this new data. For example, pushq %rax would write the 8 bytes from register %rax at address %rsp - 8 and set %rsp to that address; it is equivalent to movq %rax, -8(%rsp); subq $8, %rsp or subq $8, %rsp; movq %rax, (%rsp).

As an optimization, the compiler may choose to avoid writing arguments onto the stack. It does this for up to six arguments, which per calling convention are held in specific registers. call04.s shows this: the C code we compile it from (call04.c) is identical to the code in call03.c.

Functions with more than six arguments

There is a limited number of registers in the x86-64 architecture, and you can write functions in C that take any number of arguments! The calling convention says that the first six arguments max be passed in registers, but that the 7th and above arguments are always passed in memory on the stack. Specifically, these arguments go into the caller's stack frame, so they are stored above the entry %rsp at the point where the function is called (see call05.{c,s} and call06.{c,s}).

Return Address

As a function executes, it eventually reaches a ret instruction in its assembly. The effect of ret is to return to the caller (a form a control flow, as the next instruction needs to change). But how does the processor know what instruction to execute next, and what to set %rip to?

It turns out that the stack plays a role here, too. In a nutshell, each function call stores the return address as the very first (i.e., rightmost) data in the callee's stack frame. (If the function called takes more than six arguments, the return address is to the left of the 7th argument in the caller's stack frame.)

The stored return address makes it possible for each function to know exactly where to continue execution once it returns to its caller. (However, storing the return address on the stack also has some dangerous consequences, as we will see shortly.)

We can now define the full function entry and exit sequence. Both the caller and the callee have responsibilities in this sequence.

To prepare for a function call, the caller performs the following tasks:

  1. The caller stores the first six arguments in the corresponding registers.

  2. If the callee takes more than six arguments, or if some of its arguments are large, the caller must store the surplus arguments on its stack frame (in increasing order). The 7th argument must be stored at (%rsp) (that is, the top of the stack) when the caller executes its callq instruction.

  3. The caller saves any caller-saved registers (see last lecture's list). These are registers whose values the callee might overwrite, but which the caller needs to retain for later use.

  4. The caller executes callq FUNCTION. This has an effect like pushq $NEXT_INSTRUCTION; jmp FUNCTION (or, equivalently, subq $8, %rsp; movq $NEXT_INSTRUCTION, (%rsp); jmp FUNCTION), where NEXT_INSTRUCTION is the address of the instruction immediately following callq.

To return from a function, the callee does the following:

  1. The callee places its return value in %rax.

  2. The callee restores the stack pointer to its value at entry ("entry %rsp"), if necessary.

  3. The callee executes the retq instruction. This has an effect like popq %rip, which removes the return address from the stack and jumps to that address (because the instruction writes it into the special %rip register).

  4. Finally, the caller then cleans up any space it prepared for arguments and restores caller-saved registers if necessary.


Base Pointers and Buffer Overflow

Base Pointers and the %rbp Register

Keeping track of the entry %rsp can be tricky with more complex functions that allocate lots of local variables and modify the stack in complex ways. For these cases, the x86-64 Linux calling convention allows for the use of another register, %rbp as a special-purpose register.

%rbp holds the address of the base of the current stack frame: that is, the address of the rightmost (highest) address that points to a value still part of the current stack frame. This corresponds the rightmost address of an object in the callee's stack, and to the first address that isn't part of an argument to the callee or one of its local variables. It is called the base pointer, since the address points at the "base" of the callee's stack frame (if %rsp points to the "top", %rbp points to the "base" (= bottom). The %rbp register maintains this value for the whole execution of the function (i.e., the function may not overwrite the value in that register), even as %rsp changes.

This scheme has the advantage that when the function exits, it can restore its original entry %rsp by loading it from %rbp. In addition, it also facilitates debugging because each function stores the old value of %rbp to the stack at its point of entry. The 8 bytes holding the caller's %rbp are the very first thing stored inside the callee's stack frame, and they are right below the return address, which is in the caller's stack frame, while the saved %rbp is in the callee stack frame. This mean that the saved %rbps form a chain that allows each function to locate the base of its caller's stack frame, where it will find the %rbp of the "grand-caller's" stack frame, etc. The backtraces you see in GDB and in Address Sanitizer error messages are generated precisely using this chain!

Therefore, with a base pointer, the function entry sequence becomes:

  1. The first instruction executed by the callee on function entry is pushq %rbp. This saves the caller's value for %rbp into the callee's stack. (Since %rbp is callee-saved, the callee is responsible for saving it.)

  2. The second instruction is movq %rsp, %rbp. This saves the current stack pointer in %rbp (so %rbp = entry %rsp - 8).

    This adjusted value of %rbp is the callee's "frame pointer" or base pointer. The callee will not change this value until it returns. The frame pointer provides a stable reference point for local variables and caller arguments. (Complex functions may need a stable reference point because they reserve varying amounts of space.)

    Note, also, that the value stored at (%rbp) is the caller's %rbp, and the value stored at 8(%rbp) is the return address. This information can be used to trace backwards by debuggers (a process called "stack unwinding").

  3. The function ends with movq %rbp, %rsp; popq %rbp; retq, or, equivalently, leave; retq. This sequence is the last thing the callee does, and it restores the caller's %rbp and entry %rsp before returning.

You can find an example of this in call07.s. Lab 3 also uses the %rbp-based calling convention, so make sure you keep the extra 8 bytes for storing the caller's %rbp on the stack in mind!

Buffer overflow attacks

Now that we understand the calling convention and the stack, let's take a step back and think of some of the consequences of this well-defined memory layout. While a callee is not supposed to access its caller's stack frame (unless it's explicitly passed a pointer to an object within it), there is no principled mechanism in the x86-64 architecture that prevents such access.

In particular, if you can guess the address of a variable on the stack (either a local within the current function or a local/argument in a caller of the current function), your program can just write data to that address and overwrite whatever is there.

This can happen accidentally (due to bugs), but it becomes a much bigger problem if done deliberately by malicious actors: a user might provide input that causes a program to overwrite important data on the stack. This kind of attack is called a buffer overflow attack.

Consider the code in checksummer.cc. This program computes checksums of strings provided to it as command line arguments. You don't need to understand in deep detail what it does, but observe that the checksum() function uses a 100-byte stack-allocated buffer (as part of the buf union) to hold the input string, which it copies into that buffer.

A sane execution of checksummer might look like this:

$ ./checksummer
hey yo CS300
<stdin>: checksum 00796568

But what if the user provides an input string longer than 399 characters (remember that we also need the zero terminator in the buffer)? The function just keeps writing, and it will write over whatever is adjacent to buf on the stack.

From our prior pictures, we know that buf will be in checksum's stack frame, below the entry %rsp. Moreover, directly above the entry %rsp is the return address! In this case, that is an address in main(). So, if checksum writes beyond the end of buf, will overwrite the return address on the stack; if it keeps going further, it will overwrite data in main's stack frame.

Why is overwriting the return address dangerous? It means that a clever attacker can direct the program to execute any function within the program. In the case of checksummer.cc, note the exec_shell() function, which runs a string as a shell command. This has a lot of nefarious potential – what if we could cause that function to execute with a user-provided string? We could print a lot of sad face emojis to the shell, or, more dangerously, run a command like rm -rf /, which deletes all data on the user's computer!

If we run ./checksummer.unsafe (a variant of checksummer with safety features added by mondern compilers to combat these attacks disabled), it behaves as normal with sane strings:

$ ./checksummer.unsafe
hey yo CS300
<stdin>: checksum 00796568
But if we pass a very long string with more than 400 characters, things get a bit more unusual:
$ ./checksummer.unsafe < austen.txt
Segmentation fault (core dumped)
The crash happens because the return address for checksum() was overwritten by garbage from our string, which isn't a valid address. But what if we figure out a valid address and put it in exactly the right place in our string?

This is what the input in attack.bytes does. Specifically, using GDB, I figured out that the address of exec_shell in my compiled version of the code is 0x401156 (an address in the code/text segment of the executable). attack.bytes contains a carefully crafted "payload" that puts the value 0x400870 into the right bytes on the stack. The attack payload is 424 characters long because we need 400 characters to overrun buf, 8 bytes for the base pointer, 4 bytes for the malicious return address, and 12 bytes of extra payload because stack frames on x86-64 Linux are aligned to 16-byte boundaries.

Executing this attack works as follows:

$ ./checksummer.unsafe < attack.bytes
OWNED OWNED OWNED
The < attack.bytes syntax simple pastes the contents of the attack.bytes file into the input to the program.

Summary

Today, we learned about base pointers and saw an example of a buffer overflow. We also reviewed the layout of the stack.

We then talked about the storage hierarchy with smaller, but faster, storage at the top, and slower, but larger storage at the bottom. Caches are a way of making the bottom layers appear faster than they actually are!